Character Expansion Methods for Matrix Models of Dually Weighted Graphs
نویسندگان
چکیده
We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent is elucidated. Our methods give as a by-product an extremely simple derivation of the Migdal integral equation describing the large N limit of the Itzykson-Zuber formula. We illustrate and check our methods by analyzing a number of models solvable by traditional means. We then proceed to solve a new model: a sum over planar graphs possessing even coordination numbers on both the original and the dual lattice. We conclude by formulating equations for the case of arbitrary sets of even, self-dual coupling constants. This opens the way for studying the deep problem of phise transitions from random to flat lattices. January 12, 1995
منابع مشابه
/ 95 06 17 4 v 1 2 7 Ju n 19 95 LPTENS - 95 / 24 Almost Flat Planar Diagrams
We continue our study of matrix models of dually weighted graphs. Among the attractive features of these models is the possibility to interpolate between ensembles of regular and random two-dimensional lattices, relevant for the study of the crossover from twodimensional flat space to two-dimensional quantum gravity. We further develop the formalism of large N character expansions. In particula...
متن کاملImposing causality on a matrix model
We introduce a new matrix model that describes Causal Dynamical Triangulations (CDT) in two dimensions. In order to do so, we introduce a new, simpler definition of 2D CDT and show it to be equivalent to the old one. The model makes use of ideas from dually weighted matrix models, combined with multi-matrix models, and can be studied by the method of character expansion.
متن کاملCurvature Matrix Models for Dynamical Triangulations and the Itzykson-Di Francesco Formula
We study the large-N limit of a class of matrix models for dually weighted triangulated random surfaces using character expansion techniques. We show that for various choices of the weights of vertices of the dynamical triangulation the model can be solved by resumming the Itzykson-Di Francesco formula over congruence classes of Young tableau weights modulo three. From this we show that the lar...
متن کاملAUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS
An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...
متن کاملOn Symmetry of Some Nano Structures
It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995